PSC 202

SYRACUSE UNIVERSITY
INTRODUCTION TO
POLITICAL
ANALYSIS
MORE BIVARIATE HYPOTHESIS TESTING, HYPOTHESIS TESTING WITH SAMPLES

- Next week Wednesday: Exam \#2
- Can bring a calculator (no phone etc.)
- Allowed to bring one single-page letter-size (8.5×11) sheet with you. Front side only. What you put on it is up to you, but it has to be your own.
- Monday: Review
- Email questions etc. by Sunday evening
- If you take exams at CDR, please sign up now!

PROBLEM SETS

- Problem set 6 due on Friday
- Problem set 7 will be posted tomorrow
- Due Friday next week, but good idea to complete it before the exam

TODAY

- Finishing up bivariate hypothesis testing
- Hypothesis testing with samples

BIVARIATE RELATIONSHIPS

Independent Variable

Nominal/Ordinal Interval

EXAMPLE 1

- GPA $=3.55+0.01$ * Study Hours/Day

REGRESSION EQUATION

- GPA $=3.55+0.01$ * Study Hours/Day
- General form: $\mathbf{y}=\mathrm{a}+\mathrm{b}$ * x
- y: dependent variable
- a: intercept
- b: slope
- x : independent variable

REGRESSION EQUATION

- Regression:
- High School Math:

INTERPRETATION

- $y=a+b^{*} x$
- Interpretation of slope: For every one unit increase in x, y changes by b units
- Interpretation of intercept: When $x=0, y$ takes the value a

EXAMPLE 2

- Trump Thermometer $=-9+0.7$ * Lib/Cons

EXAMPLE 3

- Biden Thermometer $=60-0.3$ * Lib/Cons

HOW TO PICK THE LINE

- Why this line?

HOW TO PICK THE LINE

- Why not these?

HOW TO PICK THE LINE

- Which line is better?

HOW TO PICK THE LINE

HOW TO PICK THE LINE

- Actual y-value: $\mathrm{y}=\mathbf{2 8}$

HOW TO PICK THE LINE

- Predicted y-value: $\hat{y}=19$

HOW TO PICK THE LINE

- Prediction error: $\mathrm{y}-\hat{\mathrm{y}}=28-19=9$

HOW TO PICK THE LINE

HOW TO PICK THE LINE

- Actual y-value: $y=1$

HOW TO PICK THE LINE

- Predicted y-value: $\hat{y}=14$

HOW TO PICK THE LINE

- Prediction error: $y-\hat{y}=1-14=-13$

HOW TO PICK THE LINE

- Get prediction error for each observation

PREDICTION ERROR

- For each observation, we have a prediction error: y - \hat{y}
- Some are positive, some are negative
- We square the prediction errors: $(\mathbf{y}-\hat{\mathbf{y}})^{2}$
- Now all are positive

SQUARED PREDICTION ERROR

- Prediction error: $\mathbf{y}-\hat{\mathbf{y}}=28-19=9$
- Squared prediction error: $9^{2}=81$

SQUARED PREDICTION ERROR

- Prediction error: $\mathbf{y}-\hat{\mathbf{y}}=1-14=-13$
- Squared prediction error: $(-13)^{2}=169$

SQUARED PREDICTION ERROR

- We sum squared prediction errors for all observations
- $81+169+$ all the other observations $=696$

SQUARED PREDICTION ERROR

- Sum of squared prediction error red line: 696
- Sum of squared prediction error blue line: 1880

BEST LINE

- The best line is the one with the smallest sum of squared prediction errors
- "Ordinary Least Squares" (OLS) Linear Regression

BEST-FITTING LINE

- Sum of squared prediction errors: 646.3

FINDINGS THE BEST LINE

- There is a lot of complicated math behind how to find the best line

$$
\hat{\beta}=\frac{\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}=\frac{\operatorname{Cov}[x, y]}{\operatorname{Var}[x]}, \quad \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} .
$$

- Thankfully there are computer programs like \mathbf{R} or Stata that do this for us....

BACK TO BIDEN EXAMPLE

BACK TO OUR EXAMPLE

```
> m <- lm(therm_2 ~ libcons_1, data = data)
> summary(m)
Call:
lm(formula = therm_2 ~ libcons_1, data = data)
Residuals:
    Min 1Q Median 3Q Max
-43.261 -8.178 2.005 11.115 46.358
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 58.0308 3.7359 15.533 < 2e-16 ***
libcons_1 -0.2878 0.1065 -2.702 0.00842 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```

- DV: Rating of J. Biden (therm_2)
- IV: Liberal-conservative scale (libcons_1)

BACK TO OUR EXAMPLE

BACK TO OUR EXAMPLE


```
> m <- lm(therm_2 ~ libcons_1, data = data)
> summary(m)
Call:
lm(formula = therm_2 ~ libcons_1, data = data)
Residuals:
    Min 1Q Median 3Q Max
-43.261 -8.178 2.005 11.115 46.358
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{|c|c|}
\hline (Intercept) & 3.735915 .533 < 2e-16 \\
\hline & \\
\hline
\end{tabular}
libcons_1 -0.2878 0.1065 -2.702 0.00842 **
Signif. codes: 0 `***' 0.001 ‘**’ 0.01 ‘*` 0.05 `.' 0.1 ', 1
```


BACK TO OUR EXAMPLE

```
> m <- lm(therm_2 ~ libcons_1, data = data)
> summary(m)
Call:
lm(formula = therm_2 ~ libcons_1, data = data)
Residuals:
    Min 1Q Median 3Q Max
-43.261 -8.178 2.005 11.115 46.358
Coefficients:
```

 Estimate Std. Error t value Pr(>|t|)
    ```
            Estimate Std. Error t value Pr(>|t|)
l_(Intercept) 
l_(Intercept) 
Signif. codes: 0 '***` 0.001 '**` 0.01 '*' 0.05 '. 0.1 ', 1
```

```
Signif. codes: 0 '***` 0.001 '**` 0.01 '*' 0.05 '. 0.1 ', 1
```

```

Slope
- Thermometer Score = 58.0-0.29 * Lib/Cons
- (I simplified numbers earlier to make math easier...)

- Is this effect real? Lbeanalconenanamesesale
- Or is this just something we found in our sample, but lib/cons actually has no effect on perceptions of Biden in the population?
- Finishing up bivariate hypothesis testing - Hypothesis testing with samples

\section*{REMEMBER}

\section*{Biden Averaged 41\% Job Approval in His Second Year}

Results for this Gallup poll are based on telephone interviews conducted Jan. 2-22, 2023, with a random sample of 1,011 adults, aged 18 and older, living in all 50 U.S. states and the District of Columbia. For results based on the total samole of national adults, the margin of sampling error is \(\pm 4\) percentage points at the \(95 \%\) confidence level. /II
reportea margins or samping error incluae computea aesign eirects tor weignting.

\section*{BIVARIATE RELATIONSHIP}

\author{
Gender
}


\section*{Approval for J. Biden}
- Hypothesis: In a comparison of individuals, women are more likely to approve of J. Biden than men
- "gender gap"

\section*{BIVARIATE RELATIONSHIP}

\section*{Biden Approval Ratings Diverge by Gender, Education, Race}

Job Approval Ratings of President Biden, by Subgroup
\begin{tabular}{lccc} 
& Approve & Disapprove & N \\
& \(\%\) & \(\%\) & 2,937 \\
\hline All U.S. adults & 56 & 39 & \\
\hline Gender & & & 1,643 \\
Men & 49 & 45 & 1,294
\end{tabular}

\section*{PROBLEM}
- Is the effect of gender on approval real?
- Does it exist in the population?
- Maybe gender actually has no effect in the population, and we just found one by chance in this sample?
- We have a random sample
- Men: 49\% approval
- Women: 62\% approval
- Want to know: is mean approval rating of men and women in the population the same or not?

\section*{ALTERNATIVE HYPOTHESIS}
- There is a relationship between the independent and dependent variable in the population
- \(\mathrm{H}_{\mathrm{A}}\) or \(\mathrm{H}_{1}\)

\section*{NULL HYPOTHESIS}
- In the population, there is no relationship between dependent and independent variable
- If there is a difference in the sample, it is due to random sampling error
- \(\mathrm{H}_{0}\)
- \(\mathrm{H}_{0}\) : In a comparison of individuals, there is no difference between men and women in approval of J. Biden
- \(\mathrm{H}_{\mathrm{A}}\) : In a comparison of individuals, there is a difference between men and women in approval of J. Biden

\section*{BACK TO MISTAKES}
- Idea: Use relation between two variables in sample to make inference about relation between two variables in population
- Of course, means we can make mistakes

\section*{ERRORS}

There Is A Relation In The Population

There Is No Relation In The Population

We Conclude There Is A Relation

We Conclude There Is No Relation


\section*{ERRORS}

There Is A Relation In The Population

There Is No Relation In The Population

We Conclude There Is A Relation

We Conclude There Is No Relation

- We conclude there is a relationship between X and \(Y\) when in reality there is not
- Example: There is no difference between men and women in approval rating in the population, but we conclude that there is

\section*{TYPE I ERROR}
- We conclude there is a relationship between \(X\) and Y when in reality there is not
- "Type I error"
- We falsely reject \(\mathrm{H}_{0}\)

\section*{ERRORS}

There Is A Relation In The Population

There Is No Relation In The Population

We Conclude There Is A Relation

We Conclude There Is No Relation

- We conclude there is no relationship between \(X\) and \(Y\) when in reality there is
- Example: There is a difference between men and women in approval rating in the population, but we conclude that there is none

\section*{TYPE II ERROR}
- We conclude there is no relationship between \(X\) and \(Y\) when in reality there is
- "Type Il error"
- We falsely do not reject \(\mathrm{H}_{0}\)

\section*{ERRORS}

There Is A Relation In The Population

There Is No Relation In The Population

We Conclude There Is A Relation

We Conclude There Is No Relation
\begin{tabular}{c|c}
\(\boldsymbol{\sim}\) & \begin{tabular}{c}
\(\boldsymbol{x}\) \\
Type I
\end{tabular} \\
\hline \(\boldsymbol{x}\) \\
Type II
\end{tabular}

\section*{DECISION}
- It's bad if we conclude there is a relationship when in reality there is not (Type I error) - Type II error is also not great, but not as bad - We privilege \(\mathrm{H}_{0}\)

\section*{DECISION}
- By default: We start out with assumption that there is no relationship in population (so \(\mathrm{H}_{0}\) is true)
- No difference between men and women in Biden approval in population

\section*{DECISION}
- Ask: Is there enough evidence in the sample to reject \(\mathrm{H}_{0}\) ?
- Is the observed difference between mean and women in sample large enough to reject null hypothesis that no difference between them in population?

Job Approval Ratings of President Biden, by Subgroup
\begin{tabular}{lccc} 
& Approve & Disapprove & N \\
& \(\%\) & \(\%\) & 2,937 \\
\hline All U.S. adults & 56 & 39 & \\
\hline Gender & & & 1,643 \\
Men & 49 & 45 & 1,294
\end{tabular}
- The larger the difference in approval ratings between men and women in our samples, the less likely it is that the mean in the population is the same

P-VALUE
- Q: When do we decide that we have "enough" evidence?
- A: When the chance of falsely rejecting \(\mathrm{H}_{0}\) is 5\% or less
- Equivalent: Change of Type I error less than 5\%
- Probability of falsely rejecting \(\mathrm{H}_{0}\) is called the " \(p\) value"```

