PSC 202
SYRACUSE UNIVERSITY

INTRODUCTION TO POLITICAL ANALYSIS

HYPOTHESIS TESTING WHEN USING SAMPLES, HYPOTHESIS TESTING WITH ONE CONFOUNDER

HOUSEKEEPING

- No in-person sections on Friday
- Instead, we will distribute a worksheet to complete at your leisure
- Due December 1 (Friday in 2 weeks)
- Graded pass/fail, counts towards section attendance/participation
- If you have questions about the material, please email and/or attend student hours

TODAY

- Finishing up hypothesis testing with a sample - Hypothesis testing with one confounder
- We start out thinking H_{0} is true
- No relationship between independent and dependent variable in population
- We have a sample that shows a relation difference
- Do we reject H_{0} ?
- If we do, we want to do so wrongly at most 5% of time
- Ask: If H_{0} is true (no difference in population), what is the probability (p) of observing a relation as large (or greater) as we did in our sample just by chance?
- If less than 5% ($p<0.05$): we reject H_{0}
- If more than 5% ($\mathrm{p}>0.05$): we don't reject H_{0}
- How exactly do we do this hypothesis testing?
- How do we compute a p-value, etc.?

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup

	Approve	Disapprove	N
	$\%$	$\%$	2,937
All U.S. adults	56	39	
Gender			1,643
Men	49	45	1,294

- H_{0} : No difference between men and women in population
- The survey does find a difference of 13 percentage points
- 62 for women vs. 49 for men
- Instead of 13 percentage points, we use 0.13

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup

	Approve	Disapprove	N
	$\%$	$\%$	2,937
All U.S. adults	56	39	
Gender			1,643
Men	49	45	1,294

- Question: If there is no difference between men and women in the population, what is the probability of getting a sample where they are at least 13 points different from each other just by chance?
- Specifically: is it lower than 5% ?

IN OUR CASE

Job Approval Ratings of President Biden, by Subgroup

	Approve	Disapprove	N
	$\%$	$\%$	2,937
All U.S. adults	56	39	
Gender			1,643
Men	49	45	1,294

- Equivalent: If we reject H_{0} based on this survey, what is probability of committing Type I error?
- And is it lower than 5\%?

TEST STATISTIC

- Test statistic t:

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error of Difference }}
$$

- H_{A} : observed difference between samples
- here: 0.13 (13 percentage points)
- H_{0} : difference between samples if H_{0} is true (0.00)
- Standard Error of Difference between the two samples (here 0.018)
- I calculated this for you

TEST STATISTIC

- $\mathrm{H}_{\mathrm{A}}: 0.13$
- H_{0} : 0
- Standard Error of Difference: 0.018

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error of Difference }}
$$

$$
t=\frac{0.13-0.00}{0.018}=7.22
$$

- This is called the "t-statistic" or "t-ratio"

NORMAL DISTRIBUTION

- Remember: 95% between scores of -1.96 and 1.96
- 5% of scores outside of those scores
- T-statistic is (basically) normally distributed

SIGNIFICANCE TEST

- We reject H_{0} (no difference between men and women) if t -value indicates that chance that we commit a Type I error is less than 5\%
- 5% chance that we falsely reject H_{0}

SIGNIFICANCE TEST

If H_{0} is true, we make an error of Type I in the red areas (which sum to .05)

- We reject H_{0} if $\mathrm{t}<-1.96$ or $\mathrm{t}>1.96$

SIGNIFICANCE TEST

If H_{0} is true, we make an error of Type I in the red areas (which sum to .05)

- t-score: 7.22

SIGNIFICANCE TEST

Job Approval Ratings of President Biden, by Subgroup

	Approve	Disapprove	N
	$\%$	$\%$	2,937
All U.S. adults	56	39	
Gender			1,643
Men	49	45	1,294
Women	62	34	

- If there is no difference between men and women in population, chance that we find 13 percentage points difference in a random sample just by chance is less than 5 percent

SIGNIFICANCE TEST

Job Approval Ratings of President Biden, by Subgroup

	Approve	Disapprove	N
	$\%$	$\%$	2,937
All U.S. adults	56	39	
Gender			1,643
Men	49	45	1,294

- So we reject the null hypothesis that there is no difference between men and women in approval of Biden
- In favor of the alternative hypothesis that there is a gender difference

ANOTHER EXAMPLE

- From the class survey:
- How would you say the economy is doing?
- Bad or very bad: 48\%
- Neither, good, very good: 52\%

PARTISANSHIP AND ECONOMY

	Democrat	Not Democrat	Total
Bad Or Very	45% Bad	(25)	53% (17)
Neither, Good, Or Very Good	55% (30)	47% (15)	48% (42)
Total	100% (55)	100% (32)	100% (87)

- Difference: 8\% (0.08)

CROSS-TABULATION

- Difference between Democrats and nonDemocrats is 0.08 (8\%)
- Standard error of difference: 0.11

$$
\begin{gathered}
\frac{H_{A}-H_{0}}{\text { Standard Error of Difference }} \\
=\frac{0.08-0.0}{0.11} \\
=0.73
\end{gathered}
$$

- Is this t-statistic large enough to reject H_{0} ?

SIGNIFICANCE TEST

If H_{0} is true, we make an error of Type I in the red areas (which sum to .05)

- We reject H_{0} if $t<-1.96$ or $t>1.96$
- We had: $\mathrm{t}=0.73$

REJECT Ho?

- We reject H_{0} if $\mathrm{t}<-1.96$ or $\mathrm{t}>1.96$
- We had $t=0.73$
- So we cannot reject H_{0} that there is no difference between Democrats and nonDemocrats in perceptions of economy

SIGNIFICANCE TEST

- If there is no difference in perceptions of economy between Democrats and nonDemocrats in population, it is quite likely that we see a difference of 8 percentage points (or larger) in a random sample just by chance
- The probability of this happening is larger than 5%

BIVARIATE RELATIONSHIPS

Independent Variable

Nominal/Ordinal Interval

BIVARIATE RELATIONSHIPS

Independent Variable

> Nominal/Ordinal Interval

CROSS-TABULATION

- Very similar approach as for mean comparisons

EXAMPLE

- On a typical day, how many hours do you spend studying/ revising/preparing for your classes, not counting time in class itself?

GENDER AND STUDYING

Gender Mean Hours Frequency Standard Error

GENDER AND STUDYING

Gender Mean Hours Frequency Standard Error

Female	3.68	59	0.21
Male	3.14	31	0.27
Difference	0.54	90	0.34

- Do men really study less than women?

TEST STATISTIC

- $\mathrm{H}_{\mathrm{A}}: 0.54$
- H_{0} : 0
- Standard Error of Difference: 0.34

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error }}
$$

$$
=\frac{0.54-0.0}{0.34}
$$

$$
=1.59
$$

SIGNIFICANCE TEST

If H_{0} is true, we make an error of Type I in the red areas (which sum to .05)

- We reject H_{0} if $t<-1.96$ or $t>1.96$ - This is equivalent to $\mathrm{p}<0.05$

SIGNIFICANCE TEST

If H_{0} is true, we make an error of Type I in the red areas (which sum to .05)

- t-score: 1.59

SIGNIFICANCE TEST

- We cannot reject H_{0}
- If there is no difference in study time between men and women in population of students, it is quite likely that we see a difference of 0.54 hours (or larger) in a sample of 90 students just by chance
- The probability of this happening is larger than 5\%

EXERCISE

- Survey: ANES 2016
- DV: Opinion about Obamacare
- 1=favor a great deal, 7=oppose a great deal
- mean=4.09
- $n=1,606$

EXERCISE

Partisanhsip
Mean Evaluation
Frequency

Dem	2.92	924
	5.69	682
Difference	2.77	1606

- Standard Error of Difference: 0.098

EXERCISE

- Calculate t-statistic and decide whether we can reject H_{0}
- Solution on last slide (don't peek)

BIVARIATE RELATIONSHIPS

Independent Variable

Nominal/Ordinal Interval

REGRESSION

- Corruption Score = 6.2-0.014 * Lib/Cons

REJECT Ho?

- Can we reject H_{0} that there is no relationship between lib/cons and perceptions of corruption?

FORMULA

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error }}
$$

- $\mathrm{H}_{\mathrm{A}}:-0.014$
- H_{0} : O
- Here, the relevant standard error is the SE of the linear regression coefficient

REGRESSION TABLE

```
> m <- Lm(corruption_1 ~ [ibcons_1, data = data)
> summary(m)
Call:
lm(formula = corruption_1 ~ libcons_1, data = data)
Residuals:
    Min 1Q Median 30 Max
-5.8297 -1.0663 0.1424 1.2677 4.3095
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.17768 0.41500 14.886 <2e-16 ***
libcons_1 -0.01392 0.01126 -1.236 0.22
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error }}
$$

$$
=\frac{-0.014-0}{0.011}
$$

$$
=-1.273
$$

SIGNIFICANCE TEST

- If how liberal/conservative people are has no effect on corruption perceptions in population, it is quite likely that in a random sample we would see a slope coefficient of -0.014 (or larger) just by chance
- The probability of this happening is larger than 5%
- We do not reject H_{0} and maintain that there is no relation between ideology and corruption perceptions

ANOTHER EXAMPLE

- Feeling Thermometer = 75.2-0.41 * Lib/Cons

REGRESSION TABLE

```
> m <- Lm(therm_6 ~ Libcons_1, data = data)
> summary(m)
Call:
lm(formula = therm_6 ~ libcons_1, data = data)
Residuals:
        Min 1Q Median 3Q Max
-63.301 -18.364 -0.946 28.061 51.509
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
llllercept) 75 >204 
libcons_1 -0.4114 0.1720 -2.392 0.0191 *
Signif. codes: 0 '***' 0.001 '**’ 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error }}
$$

$$
=\frac{-0.41-0}{0.17}
$$

$$
=2.41
$$

SIGNIFICANCE TEST

- If how liberal/conservative people are has no effect on feelings about T. Swift in population, it is quite unlikely that in a random sample, we would see a slope coefficient of -0.41 just by chance
- The probability of this happening is smaller than 5%
- So we are feel comfortable to reject H_{0} and instead conclude that there is a relation between ideology and feelings towards Swift

RECAP

- We are now able to...
- ...tell whether there is covariation between X and Y in a sample
- ...tell whether our evidence (from a sample) is strong enough to conclude with reasonable certainty that the covariation is also present in the population

NEXT STEP

- Is there a credible causal mechanism that connects X to Y ?
- Can we rule out the possibility that Y could cause X ?
- Is there covariation between X and Y ?
- Have we controlled for all confounding variables (Z) that might make the association between X and Y spurious?
- Finishing up hypothesis testing with a sample - Hypothesis testing with one confounder

SURVEY

- How much do you agree with the following statement: I would feel safer if there was more armed security personnel on campus.

BIVARIATE RELATIONSHIP

Feeling safer if more armed security

- What explains why some of you would feel safer with more armed security on campus, while others would not feel safer?

PARTISANSHIP \& SAFETY

BIVARIATE RELATIONSHIP

Partisanship

Feeling safer if more armed security

- Zero-order effect: Non-Democrats are 8 percentage points more likely to feel safer with more armed security than Democrats

CAUSALITY

- Want to know causal effect of partisanship on feeling safer with armed security:
- Feeling of person if Democrat - Feeling of same person if not Democrat
- For each person, only one of those is observed
- Fundamental problem of causal inference: We can't observe alternate reality in which you identify with a different party!

CAUSALITY

- What we can compute:
- Feeling of people who are Democrats - Feeling of people who are not Democrat
- Problem: Students who choose to identify as

Democrats are likely different from students who choose to not identify as Democrats in many other ways

- These other differences potentially affect our ability to compute the causal effect of partisanship

CONFOUNDER?

Race (Z)

Partisanship (X)

Feeling safer if more armed security (Y)

MAYBE THIS IS GOING ON?

Non-white students more likely to be Race (Z)
Democrats than white students

Partisanship (X)

MAYBE THIS IS GOING ON?

Non-white students more likely to be Democrats than white students

Partisanship (X)

Non-white students less likely to feel safer with armed security than white students

Feeling safer if more armed security (Y)

MAYBE THIS IS GOING ON?

Non-white students more likely to be Democrats than white students

Partisanship (X)

Race (Z)
Non-white students more likely to not feel safer with
armed security than white students

Feeling safer if more armed security (Y)

Partisanship by itself has no effect on feeling safer

POTENTIAL CONCERN

Disproportionately non-white students

| | Democrats | Not Democrats |
| :---: | :---: | :---: | Total

MAYBE THIS IS GOING ON?

Non-white students more likely to be Democrats than white students

Partisanship (X) Race (Z)

Non-white students more likely to not feel safer with
armed security than white students

Feeling safer if more armed security (Y)

- How can we find out if this is what's going on?

EXERCISE SOLUTION

- $\mathrm{H}_{\mathrm{A}}: 2.77$
- $\mathrm{H}_{0}: 0$
- Standard Error of Difference: 0.098

$$
t=\frac{H_{A}-H_{0}}{\text { Standard Error of Difference }}
$$

$$
t=\frac{2.77-0.00}{0.098}=28.26
$$

EXERCISE SOLUTION

- We reject H_{0} if $\mathrm{t}<-1.96$ or $\mathrm{t}>1.96$
- This is equivalent to $\mathrm{p}<0.05$

EXERCISE SOLUTION

- t-score: 28.26

EXERCISE SOLUTION

- With $n=1,606$, a mean difference of 2.77 (SE
0.098) produces a t-statistic of 28.26
- We reject H_{0} if $\mathrm{t}<-1.96$ or $\mathrm{t}>1.96$
- If there is no difference in the population, it is extremely unlikely to find a large difference of 2.77 points (or larger) in such a large sample just by chance
- We reject null hypothesis that there is no difference between R and D in evaluation of Obamacare

