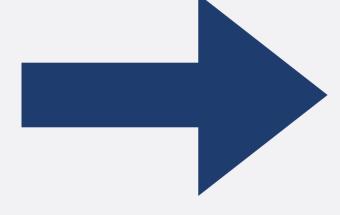
DATA ANALYTICS FOR POLITICAL **SCIENCE** ESTIMATING CAUSAL EFFECTS WITH **OBSERVATIONAL DATA**

PSC 400 SYRACUSE UNIVERSITY

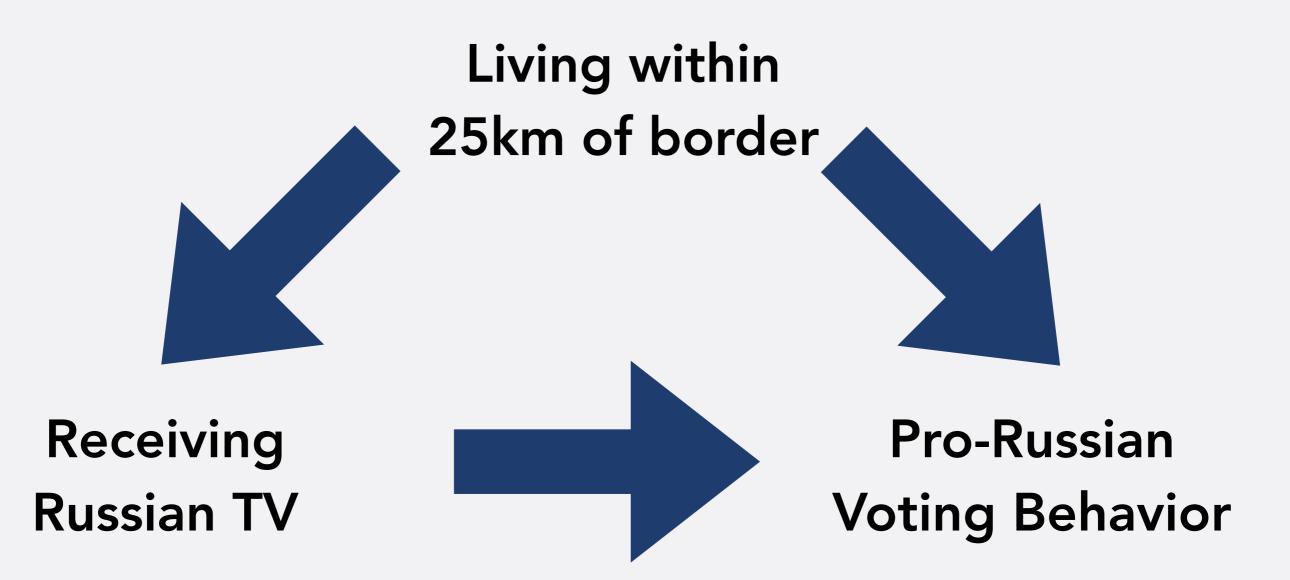
SOLUTIONS


- Solutions to problem sets are/will be posted on Blackboard
- If you want me to discuss them in class, let me know

UA_PRECINCTS.CSV

	•
variable	description
russian_tv	identifies precincts that receive Russian TV: 1=there is reception or 0=there is no reception
pro_russian	vote share received in the precinct by pro-Russian parties in the 2014 Ukrainian parliamentary election (in percentages)
prior_pro_russian	vote share received in the precinct by pro-Russian parties in the 2012 Ukrainian parliamentary election (in percentages)
within_25km	identifies precincts that are within 25 kilo- meters of the Russian border: $1=it$ is within 25 kilometers of the border or $0=it$ is not within 25 kilometers of the border

RUSSIA AND UKRAINE


Receiving Russian TV

Change in Pro-Russian Voting Behavior

- Compute difference-in-means
- Estimate regression

RUSSIA AND UKRAINE

 Estimate regression of effect of Russian TV, controlling for living near border

IMMIG.CSV

Name	Description
age	Age (in years)
female	1 indicates female; 0 indicates male
employed	1 indicates employed; 0 indicates unemployed
nontech.whitcol	1 indicates non-tech white-collar work (e.g., law)
tech.whitcol	1 indicates high-technology work
expl.prejud	Explicit negative stereotypes about Indians (continuous scale,
	0-1)
impl.prejud	Implicit bias against Indian Americans (continuous scale, 0-1)
h1bvis.supp	Support for increasing H-1B visas (5-point scale, 0-1)
indimm.supp	Support for increasing Indian immigration (5-point scale, 0-1)

- DV: Support for more H1B visas (h1bvis.supp)
 - From 0=decrease a great deal to 1=increase a great deal
- Main IV: Implicit bias against Indian Americans (impl.prejud)
 - From 0=low implicit prejudice to 1=high implicit prejudice

IMMIGRATION ATTITUDES

• Immig. Supp. = α + β_1 * Impl. Prej. + β_2 * Female

IMMIGRATION ATTITUDES

• Immig. Supp. = α + β_1 * Impl. Prej. + β_2 * Female + β_3 * Employed + β_4 * Age + ϵ

EXERCISE

- Load Quality of Government data
- Create variable: Difference in literacy between men and women
 - wdi_litradm and wdi_litradf
- Run regression:
 - DV: Literacy rate difference
 - IV: Polity score (p_polity2)
- Add additional controls to regression
 - Expenditure on education as % of GDP (wdi_expedu)
 - Government effectiveness (wbgi_gee)
- Bonus: Plot predicted value of DV as a function of polity score
 - Set wdi_expedu and wbgi_gee to their means

PREVIEW

- Uncertainty, confidence intervals
- Extensions to regression
- Then: exploration
 - Text as Data
 - Network Data
 - Spatial Data (Maps)
 - Webscraping