PSC 400
SYRACUSE UNIVERSITY
DATA ANALYTICS FOR POLITICAL
SCIENCE
QUANTIFYING UNCERTAINTY

ASSIGNMENTS

- Problem Set 3 posted
- Q3: "which model fits the data better?" $=\mathrm{R}^{2}$
- Review exercise 6 posted
- Both due on Friday

SAMPLE VS POPULATION

- What we are interested in: population parameter
- Approval of J. Biden in American population
- What we can study: sample parameter
- Approval of J. Biden in survey sample

RANDOM SAMPLING

- A random sample of the population avoids systematic sampling error
- If we use random sampling, we can use our sample's characteristics to estimate the population's characteristics
- e.g. can use 1000 randomly selected survey respondents to infer approval rating of J . Biden in American population

RANDOM SAMPLING ERROR

- But: random sampling introduces random sampling error
- It is unlikely that our random sample looks exactly like the American population
- e.g. by chance, we might draw more people that approve of Biden than is the case in the population
- Or we might draw more people that disapprove of his performance than in the population

RANDOM SAMPLING ERROR

Do Americans approve or disapprove of Joe Biden?

- https://projects.fivethirtyeight.com/polls/approval/joe-biden/

RANDOM SAMPLING ERROR

RANDOM SAMPLING ERROR

- Random sampling introduces random sampling error
- Example: Flipping a coin
- For a fair coin, we know that Heads=50\%, Tails=50\%
- We flip a coin 10 times:
- We may get HHTHTTHTHT (5H, 5T)
- We might also get HHHHHTHHHT (8H, 2T)
- Or TTTHTTTTHT (2H, 8T)

THE PROBLEM

- Population parameter = Sample statistic + random sampling error
- We can figure out how large the random sampling error is

95\% CONFIDENCE INTERVAL

$$
\begin{aligned}
95 \% \mathrm{Cl}= & {[\text { estimator }-1.96 \times \text { standard error, }} \\
& \text { estimator }+1.96 \times \text { standard error }]
\end{aligned}
$$

where:

- estimator is a random variable across multiple hypothetical samples
- standard error is the estimated standard deviation of the estimator across multiple hypothetical samples.

CI SAMPLE MEAN

CI DIFFERENCE IN MEANS

95\% CONFIDENCE INTERVAL
 FOR THE DIFFERENCE-IN-MEANS ESTIMATOR

LOWER LIMIT:
$\bar{Y}_{\substack{\text { treatment } \\ \text { group }}}-\bar{Y}_{\substack{\text { control } \\ \text { group }}}-1.96 \times \sqrt{\frac{\operatorname{var}\left(Y_{\text {treatment }}\right)}{n_{\text {treatment group }}}+\frac{\operatorname{var}\left(Y_{\text {control }}\right)}{n_{\text {control group }}}}$

UPPER LIMIT:
$\bar{Y}_{\substack{\text { teatrent } \\ \text { goupp }}} \bar{Y}_{\substack{\text { control } \\ \text { gooup }}}+1.96 \times \sqrt{\frac{\operatorname{var}\left(Y_{\text {treatment }}\right)}{n_{\text {treatment group }}}+\frac{\operatorname{var}\left(Y_{\text {control }}\right)}{n_{\text {control group }}}}$
where:

- $\bar{Y}_{\text {treatement }}-\bar{Y}_{\text {control }}$ is the difference-in-means estimator
$-\sqrt{\operatorname{var}\left(Y_{\text {treatment }}\right) / n_{\text {treatment group }}+\operatorname{var}\left(Y_{\text {control }}\right) / n_{\text {control group }}}$ is the standard error of the difference-in-means estimator
- $\operatorname{var}\left(Y_{\text {treatment }}\right)$ and $\operatorname{var}\left(Y_{\text {control }}\right)$ are the sample variances of Y under the treatment and control conditions
- $n_{\text {treatment group }}$ and $n_{\text {control group }}$ are the number of observations in the treatment and the control groups in the sample.

EXERCISE

- UA_survey.csv
- Compute difference-in-means for pro-Russian vote between those with and without access to Russian TV
- Compute the 95% confidence interval of that difference

POPULATION VS. SAMPLE, AGAIN

- Want to know: does Russian TV have effect on pro-Russian votes in the population?
- We only have data from a random sample
- Idea: Use relation between two variables in sample to make inference about relation between two variables in population
- Of course, means we can make mistakes

NULL HYPOTHESIS

- In the population, there is no relationship between dependent and independent variable
- H_{0}

ALTERNATIVE HYPOTHESIS

- There is a relationship between the independent and dependent variable in the population
- H_{a} or H_{1}

ERRORS

There Is A Relation In The Population

There Is No Relation In The Population

We Conclude There Is A Relation

We Conclude There Is No Relation

$\boldsymbol{\sim}$	\boldsymbol{x} Type I
\boldsymbol{x}	
Type II	

TYPE I ERROR

- We conclude there is a relationship between X and Y when in reality there is not
- "Type I error"
- We falsely reject H_{0}

TYPE II ERROR

- We conclude there is no relationship between X and Y when in reality there is
- "Type Il error"
- We falsely do not reject H_{0}

DECISION

- It's really bad if we conclude there is a relationship when in reality there is not
- Type I error: falsely rejecting H_{0}
- We only want to reject H_{0} based on our sample if chance of committing Type I error is relatively small
- Typically: 5\% or less

