PSC 400: Data Analytics for Political Science

Monday and Wednesday, 2:15 - 3:35, HB Crouse Kittredge

Prof. Simon Weschle
Email:, Phone: 315-443-8678
Office Hours: Wednesday, 12:00 - 1:30, Zoom (see Syllabus for details)

Data and data analysis are increasingly important for political science research, but also in the public discourse and the workplace. In this class, you will learn how to conduct data analysis yourself. We'll cover topics such as finding data, data cleaning and data manipulation, data visualization, and data analysis. Along the way, we'll learn basic statistical functions and plots in the powerful (and free) statistical program R. Throughout, the class takes an applied approach, so students will develop their own research project and conduct their own data analyses.

Kosuke Imai (2017): Quantitative Social Science: An Introduction. Princeton University Press.
I will refer to the book as QSS. You can rent/buy the book from Amazon, Princeton University Press, or your favorite book retailer as hardcover, paperback, or e-book. The book should also shortly be available to check out for a short period of time from the Library Course Reserves. I will post copies of the assigned chapters for the first week or two to give everyone a chance to get access to the book.


  • Class Participation (15%): To succeed in this course, you have to attend class on a regular basis, come prepared by having worked through the assigned reading, and actively participate and ask questions.
  • Class Programming Review Exercises (10%): There will be short weekly review exercises that cover the basic R material we learned. Each exercise is graded as pass/fail, where a pass is worth 1 point and a fail worth 0.
  • Problem Sets (30%): There will be 5 to 6 problem sets in which you are asked to use what you have learned in class to analyze different kinds of data. The answers to these problem sets should be typed. They are graded on a scale from 1 to 5, and late submissions will be penalized by 1 point for every 24 hours past the due date. Any extension requests must be made to me personally and as soon as possible.
  • Data Analysis Memos (15%): Your main task in this class will be to write a paper with your own data analysis on a question that is of interest to you. To help you along the way, you will submit reports about the individual steps throughout the semester. The memos will cover: your research question and potential confounders, your data, data cleaning, descriptive statistics, bivariate relations, (first) regression results. The memos should be short (2-3 pages) and typed in their entirety. They are graded on a scale from 1 to 5, and late submissions will be penalized by 1 point for every 24 hours past the due date. Any extension requests must be made to me personally and as soon as possible. I will provide feedback to every memo to help you improve your final paper.
  • Data Analysis Paper (30%): Your final paper should set out your research question, explain the data and statistical methods you use to investigate it, and describe what, based on your data analysis, the answer is. There is no minimum or maximum paper length. It should be as long as needed, but as short as possible. The papers are due at the beginning of the finals period (May 18).

For more detailed information on class policies and all of the fine print, please see the Syllabus.

Below is a list of topics that the class will cover. The exact week-to-week schedule will be developed and updated throughout the semester to reflect student interest and the pace at which we are progressing.

  • Getting Started with R
  • Causality, Single Variables
  • Finding and Cleaning Data
  • Bivariate Relationships
  • Multiple Regression
  • Prediction, Spatial Data, Network Data, Text as Data (We will choose some of those topics based on student interest)
  • Website Scraping (Guest Lecturer: Sebastian Karcher)
  • Data Analysis Paper Workshop

Below is a continuously updated class schedule. It contains information on what topics we are covering as well as on the readings and assignments. Please check this site EVERY WEEK.

Week 1: Getting Started with R

Week 2: Causality and Single Variables

Week 3: Causality and Single Variables

  • Monday (2/22): QSS Ch. 2.3-2.5 (Blackboard)
  • Wednesday (2/24): QSS Ch. 2.6, 3.1-3.3 (Blackboard)
  • Data: minwage.csv
  • Slides: Class 5, Class 6
  • Code: Class 5, Class 6
  • Review Exercise 1 (due 2/26, submit on Blackboard): learnr::run_tutorial("01-causality1", package = "qsslearnr").
  • Review Exercise 2 (due 3/1, submit on Blackboard): learnr::run_tutorial("02-causality2", package = "qsslearnr").
  • Data Analysis Memo 1 (due 3/5, submit on Blackboard).

Week 4: Finding and Cleaning Data

Week 5: Bivariate Relationships

Week 6: Bivariate Relationships

Week 7: Multiple Regression

Week 8: Multiple Regression

Week 9: Extensions to Multiple Regression, Prediction

Week 10: Prediction, Spatial Data

Week 11: Spatial Data

Week 12: Text as Data

Week 13: Webscraping

Week 14: Review and Final Paper Workshop

  • Monday (5/10): Be prepared to talk about your project for 2-3 minutes: What question are you answering, what data do you use, how do you analyze it, and what have you found so far?
  • Slides: Class 24